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TRANSVERSE VIBRATION ON A BEAM – AN ANALYTICAL MODEL 
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Derivation of the wave equation 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a short section of a beam, length L and 

having cross-sectional area S. Due to a turning 

moment applied at x = L, the section is bent in an 

arc of radius R.  

 

The moment at x = L may be derived by 

considering an element of the section, area dS, 

situated a distance k from the midline of the 

section. Due to the applied moment, the element 

is stretched a distance δx.  The force dF required 

to stretch this element is  

                             
E dS x

dF
L

δ
=  

 

where E is Young's modulus. 

From symmetry, it can be seen that  
x L

k R

δ
=  so 

the equation for dF can be written                       

                            
E dS k

dF
R

=  

The moment about the midline is k dF, so the 

total moment M applied to the section at x = L 

will be 

                       
2

S S

E
M kdF k dS

R
= =∫ ∫  

 
2

S
E k dS∫  is the flexural rigidity of the beam and 

is usually written as EI where 
2

S
I k dS= ∫  and is 

the second moment of inertia around the midline 

of the beam. 

Let 
2 2

S
SK k dS= ∫  where K is the effective 

distance from the midline at which the total force 

F may be said to act.  

Then the total moment is 

2ESK
M

R
=  

The radius R can be removed by expressing it in 

terms of x and y. ( )
22 2R x R y= + −  

Expanding, 
2 2 2 2R x R 2Ry y= + − +  
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So, the total moment M for the segment can be expressed as, ( )
2

2

y 2L

d y
x F x dx M ESK

dx
= − = −∫   

                        

Differentiating  both sides with respect to x gives, ( )
3

2

y 3

d y
x F x ESK

dx
= −                                                

(Note that the third differential of y with respect to x is equivalent to the sheer force on the beam 

over the length x. For a very short beam where x dx→ , this can be approximated to the sheer force 

at x.) 

Differentiating once again,        ( )
( ) 4

y 2

y 4

dF x d y
F x x ESK

dx dx
+ = −  

 

Now if the segment length L is very short, ( )yF x  can be considered a constant from x = 0 to x = L. 

So ( )y

d
F x 0

dx
→   and then, ( )

4
2

y 4

d y
F x ESK

dx
= −  

The sheer force term ( )yF x  will be due to the transverse acceleration of beam at x, and can be written as 

( )
2

y 2

d y
F x dx ρ S dx

dt
=  where ρ is the density and ρ S dx is the mass of the element through the 

segment at x of width dx.  

 

 

If x is small compared to R, y is always much 

smaller than x, so 2y 0→  

and 
2x

y
2R

=  

Differentiating  twice with respect to x,  
2

2

d y 1

dx R
=  

The total moment M can now be written as,              

                         
2

2

2

d y
M ESK

dx
=  

 

(Note that the second differential of y with respect 

to x is equivalent to the total moment at x .)  
 

Let Fy(x) be the function of the sheer force acting 

continuously along the length of the beam but 

orthogonally to it, such that the total sheer force 

acting on the beam is, ( )yF x dx∫  

Now, the moment M will be equal and opposite to 

the sum of the sheer forces acting in the y direction, 

multiplied by their distance x from the left hand end 

of the segment. 
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Since ( )yF x  is a constant with respect to x over the length of the segment, it is possible to write 

( )
2

y 2

d y
F x ρ S

dt
=   and finally, the equation of motion for transverse vibrations on a beam can be 

written as, 

 

2 2 4

2 4

y EK y

t x

∂ ∂
= −

∂ ρ ∂
 

Solutions to the wave equation 

 

The partial differentiations in the wave equation above reflect the fact that y is an independent 

function of x and t such that; ( ) ( ) Siny x,t v x  t= ω  

Substituting this function into the wave equation gives, ( )
( )d

d

42
2

4

v xEK
v x

x
ω =

ρ
 

 

Let 
2

4

2
q

EK

ω ρ
=  then the equation can be re-written as ( )

( )d

d

4

4

4

v x
q v x

x
=  

 

The solutions to this equation are of the exponential type such that,  ( ) xv x c eθ=  where c is an 

arbitrary constant.  

 

It will seen that 
4 4qθ = , so that 

2 2qθ = ±  and therefore θ can take on values of q±  or iq±  

where i 1= −  

 

The general solution then is, ( ) i iqx qx qx qx

1 2 3 4v x c e c e c e c e− −= + + +  where ....1 4c  are arbitrary 

constants. 

 

It is more convenient to express ( )v x  in terms of trigonometric functions, so that the general 

solution of the x part of the wave equation can be expressed as; 

 

( ) Cos Sin Cosh Sinhv x A  qx + B  qx + C  qx + D  qx=    

 

where A, B, C and D are arbitrary constants. 

 

The particular solutions of this equation may be found for a given situation by subjecting it to 

boundary conditions.  

 

 

 

 

 

 

 

 

 

 

 

 



The cantilever 

 

Consideration of the solutions to the equations for transverse vibrations in the case of a fixed-free 

beam, the cantilever, serves as a model for the solutions for a free-free beam, pinned-free beam and 

beams with other boundary conditions applied. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows a beam, cross-sectional area S, length � , which has one end fixed (x = 0) and the 

other end free (x = � ).  
 

The fixed end is unable to move in the vertical direction, so v(x) = 0 at x = 0 for all time. Too, the 

angle of the beam does not change at x = 0, so 
( )d

d

v x
0

x
=  at x = 0 for all time. Imposing these 

conditions on the general solution means that A + C = 0. 

At the free end of the beam, there is necessarily no bending moment, so 
( )d

d

2

2

v x
0

x
=  at x = �  for all 

time. 

And there will be no sheer force so 
( )d

d

3

3

v x
0

x
=  at x = �  for all time. 

Imposing these conditions on the general solution means that B + D = 0.  

 

So   ( ) ( )Cosh Cos Sinh SinC q q D q q 0+ + + =� � � �  

and ( ) ( )Sinh Sin Cosh CosC q q D q q 0− + + =� � � �  

 

To solve these homogeneous linear equations in C and D , it is necessary that; 

 

Cosh Cos Sinh Sin

Sinh Sin Cosh Cos

q q     q q
0

q q     q q

+ +
=

− +

� � � �

� � � �
 

 

or Cosh Cos1 q  q 0+ =� �  

 

If q Z=�  then  Cos
Cosh

1
Z

Z
= −   and this equation may be solved graphically by noting the 

values of Z at which the curves of these two functions intercept. 
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The first few roots are .1Z 1 8751=  and .2Z 4 694= . Thereafter, with the function 
Cosh

1

Z
−  

approaching zero asymptotically, the roots are given to good accuracy by, ( )nZ n 2
2

π
= +  

The natural frequencies of a cantilever beam may now be written as, 

 
1 1

22 22 2
2 n

n n

1
2

2
n

1
2

2
n

EK Z EK
q

Z EI

S

Z EI

m

    
ω = =    

ρ ρ    

  
=    

ρ   

   
=    
   

�

�

�

 

where m is the mass per unit length of the beam. 

 

 

The shape of the standing wave vibrational modes on the beam 

 

As shown above, the amplitude ( )y x  at x is given by; 

 

 ( ) Cos Sin Cosh Sinhv x A  qx + B  qx + C  qx + D  qx=  

 

Since A + C = 0 and B + D = 0,  then; 
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 ( ) ( ) ( )Cosh Cos Sinh Sinv x C qx qx D qx qx= − + −  

 

using ( ) ( )Sinh Sin Cosh CosC q q D q q 0− + + =� � � �  to express D in terms of C, then dividing v( x) 

through by C gives, 

 

( ) ( )
( )
( )

( )
Sin Sinh

Cosh Cos Sinh Sin
Cosh Cos

q q
v x qx qx qx qx

q q

−
≡ − + −

+

� �

� �
 

 
Figure 6 shows the shapes of the first three modes of natural vibrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 



Transverse wave propagation velocity  

 

While torsional vibrations, longitudinal vibrations and sheer vibrations will propagate along the 

beam at the speed of sound, s

E
V =

ρ
, transverse vibration travels as a phase wave as given by the 

equation  ( ) ( )Sin
2

y x,t a x Vt
π

= −
λ

, which is a sinusoidal wave propagating along the beam. 

This equation for y satisfies the wave equation  
2 2 4

2 4

y EK y

t x

∂ ∂
= −

∂ ρ ∂
   if   

1
2 22 EK

V
 π

=  
λ ρ 

  

It should be noted that the transverse vibration velocity is inversely proportional to the wavelength, 

λ  and the velocity is thus dispersive with wavelength, or frequency. 

In the trigonometric expressions above, the term q�  may be replaced by 
2

q
π

=
λ

� �  where λ is the 

wavelength of the particular resonant mode. 

Substituting for λ , the expression for velocity may finally be written as, 

1
2 2Z EK

V
 

=  
ρ �

 

 


