TRANSVERSE VIBRATION ON A BEAM – AN ANALYTICAL MODEL

Geoffrey Kolbe

Derivation of the wave equation

Consider a short section of a beam, length L and having cross-sectional area S. Due to a turning moment applied at x = L, the section is bent in an arc of radius R.

The moment at x = L may be derived by considering an element of the section, area dS, situated a distance k from the midline of the section. Due to the applied moment, the element is stretched a distance δx . The force dF required to stretch this element is

$$dF = \frac{E dS \delta x}{L}$$

where E is Young's modulus.

From symmetry, it can be seen that

$$\frac{\delta x}{k} = \frac{L}{B}$$
 so

the equation for dF can be written

$$dF = \frac{E dS k}{B}$$

The moment about the midline is $k \, dF$, so the total moment M applied to the section at x = L will be

$$M = \int_{S} k dF = \frac{E}{R} \int_{S} k^{2} dS$$

 $E \int_{S} k^2 dS$ is the *flexural rigidity* of the beam and is usually written as EI where $I = \int_{S} k^2 dS$ and is the *second moment of inertia* around the midline of the beam.

Let $SK^2 = \int_S k^2 dS$ where K is the effective distance from the midline at which the total force F may be said to act.

Then the total moment is $M = \frac{ESK^2}{R}$

The radius R can be removed by expressing it in terms of x and y. $R^2 = x^2 + (R-y)^2$ Expanding, $R^2 = x^2 + R^2 - 2Ry + y^2$

If x is small compared to R, y is always much smaller than x, so $y^2 \rightarrow 0$

and
$$y = \frac{x^2}{2R}$$

Differentiating twice with respect to x, $\frac{d^2y}{dx^2} = \frac{1}{R}$ The total moment M can now be written as,

$$M = ESK^2 \frac{d^2y}{dx^2}$$

(Note that the second differential of y with respect to x is equivalent to the *total moment* at x.)

Let $F_y(x)$ be the function of the sheer force acting continuously along the length of the beam but orthogonally to it, such that the total sheer force acting on the beam is, $\int F_y(x) dx$

Now, the moment M will be equal and opposite to the sum of the sheer forces acting in the y direction, multiplied by their distance x from the left hand end of the segment.

Figure 3

So, the total moment M for the segment can be expressed as, $\int_{L} x F_{y}(x) dx = -M = -ESK^{2} \frac{d^{2}y}{dx^{2}}$

Differentiating both sides with respect to x gives, $x F_y(x) = -ESK^2 \frac{d^3y}{dx^3}$

(Note that the third differential of y with respect to x is equivalent to the *sheer force* on the beam over the length x. For a very short beam where $x \rightarrow dx$, this can be approximated to the sheer force *at* x.)

Differentiating once again,
$$F_y(x) + x \frac{dF_y(x)}{dx} = -ESK^2 \frac{d^4y}{dx^4}$$

Now if the segment length L is very short, $F_{v}(x)$ can be considered a constant from x = 0 to x = L.

So
$$\frac{d}{dx}F_y(x) \rightarrow 0$$
 and then, $F_y(x) = -ESK^2\frac{d^4y}{dx^4}$

The sheer force term $F_y(x)$ will be due to the transverse acceleration of beam at x, and can be written as $F_y(x) dx = \rho S dx \frac{d^2 y}{dt^2}$ where ρ is the density and $\rho S dx$ is the mass of the element through the segment at x of width dx. Since $F_y(x)$ is a constant with respect to x over the length of the segment, it is possible to write $F_y(x) = \rho S \frac{d^2 y}{dt^2}$ and finally, the equation of motion for transverse vibrations on a beam can be written as,

$$\frac{\partial^2 y}{\partial t^2} = -\frac{\mathsf{E}\mathsf{K}^2}{\rho}\frac{\partial^4 y}{\partial x^4}$$

Solutions to the wave equation

The partial differentiations in the wave equation above reflect the fact that y is an independent function of x and t such that; $y(x,t) = v(x) \sin \omega t$

Substituting this function into the wave equation gives, $v(x)\omega^2 = \frac{EK^2}{\rho}\frac{d^4v(x)}{dx^4}$

Let $q^4 = \frac{\omega^2 \rho}{EK^2}$ then the equation can be re-written as $q^4 v(x) = \frac{d^4 v(x)}{dx^4}$

The solutions to this equation are of the exponential type such that, $v(x) = c e^{\theta x}$ where c is an arbitrary constant.

It will seen that $\theta^4 = q^4$, so that $\theta^2 = \pm q^2$ and therefore θ can take on values of $\pm q$ or $\pm iq$ where $i = \sqrt{-1}$

The general solution then is, $v(x) = c_1 e^{qx} + c_2 e^{-qx} + c_3 e^{iqx} + c_4 e^{-iqx}$ where $c_{1...4}$ are arbitrary constants.

It is more convenient to express v(x) in terms of trigonometric functions, so that the general solution of the x part of the wave equation can be expressed as;

 $v(x) = A \cos qx + B \sin qx + C \cosh qx + D \sinh qx$

where A, B, C and D are arbitrary constants.

The particular solutions of this equation may be found for a given situation by subjecting it to boundary conditions.

The cantilever

Consideration of the solutions to the equations for transverse vibrations in the case of a fixed-free beam, the cantilever, serves as a model for the solutions for a free-free beam, pinned-free beam and beams with other boundary conditions applied.

Figure 4

Figure 4 shows a beam, cross-sectional area S, length ℓ , which has one end fixed (x = 0) and the other end free (x = ℓ).

The fixed end is unable to move in the vertical direction, so v(x) = 0 at x = 0 for all time. Too, the angle of the beam does not change at x = 0, so $\frac{dv(x)}{dx} = 0$ at x = 0 for all time. Imposing these conditions on the general solution means that A + C = 0.

At the free end of the beam, there is necessarily no bending moment, so $\frac{d^2 v(x)}{dx^2} = 0$ at $x = \ell$ for all time.

And there will be no sheer force so $\frac{d^3 v(x)}{d x^3} = 0$ at $x = \ell$ for all time. Imposing these conditions on the general solution means that B + D = 0.

So $C(\cosh q\ell + \cos q\ell) + D(\sinh q\ell + \sin q\ell) = 0$ and $C(\sinh q\ell - \sin q\ell) + D(\cosh q\ell + \cos q\ell) = 0$

To solve these homogeneous linear equations in C and D, it is necessary that;

 $\begin{vmatrix} \cosh q\ell + \cos q\ell & \operatorname{Sinh} q\ell + \operatorname{Sin} q\ell \\ \operatorname{Sinh} q\ell & -\operatorname{Sin} q\ell & \operatorname{Cosh} q\ell + \operatorname{Cos} q\ell \end{vmatrix} = 0$

or $1 + \operatorname{Cosh} q \ell \operatorname{Cos} q \ell = 0$

If $q\ell = Z$ then $\cos Z = -\frac{1}{\cosh Z}$ and this equation may be solved graphically by noting the values of Z at which the curves of these two functions intercept.

The first few roots are $Z_1 = 1.8751$ and $Z_2 = 4.694$. Thereafter, with the function $-\frac{1}{\cosh Z}$ approaching zero asymptotically, the roots are given to good accuracy by, $Z_n = (n+2)\frac{\pi}{2}$ The natural frequencies of a cantilever beam may now be written as,

$$\begin{split} \omega_{n} &= q_{n}^{2} \left(\frac{\mathsf{E}\mathsf{K}^{2}}{\rho} \right)^{\frac{1}{2}} = \left(\frac{\mathsf{Z}_{n}}{\ell} \right)^{2} \left(\frac{\mathsf{E}\mathsf{K}^{2}}{\rho} \right)^{\frac{1}{2}} \\ &= \left(\frac{\mathsf{Z}_{n}}{\ell} \right)^{2} \left(\frac{\mathsf{E}\mathsf{I}}{\rho\mathsf{S}} \right)^{\frac{1}{2}} \\ &= \left(\frac{\mathsf{Z}_{n}}{\ell} \right)^{2} \left(\frac{\mathsf{E}\mathsf{I}}{\mathsf{m}} \right)^{\frac{1}{2}} \end{split}$$

where m is the mass per unit length of the beam.

The shape of the standing wave vibrational modes on the beam

As shown above, the amplitude y(x) at x is given by;

$$v(x) = A \cos qx + B \sin qx + C \cosh qx + D \sinh qx$$

Since A + C = 0 and B + D = 0, then;

 $v(x) = C(\cosh qx - \cos qx) + D(\sinh qx - \sin qx)$

using $C(\sinh q\ell - \sin q\ell) + D(\cosh q\ell + \cos q\ell) = 0$ to express D in terms of C, then dividing v(x) through by C gives,

$$v(x) \equiv (\cosh qx - \cos qx) + \frac{(\sin q\ell - \sinh q\ell)}{(\cosh q\ell + \cos q\ell)} (\sinh qx - \sin qx)$$

Figure 6 shows the shapes of the first three modes of natural vibrations.

Transverse wave propagation velocity

While torsional vibrations, longitudinal vibrations and sheer vibrations will propagate along the beam at the speed of sound, $V_s = \sqrt{\frac{E}{\rho}}$, transverse vibration travels as a phase wave as given by the equation $y(x,t) = a \sin \frac{2\pi}{\lambda} (x - Vt)$, which is a sinusoidal wave propagating along the beam.

This equation for y satisfies the wave equation $\frac{\partial^2 y}{\partial t^2} = -\frac{\mathsf{E}\mathsf{K}^2}{\rho}\frac{\partial^4 y}{\partial x^4}$ if $\mathsf{V} = \frac{2\pi}{\lambda}\left(\frac{\mathsf{E}\mathsf{K}^2}{\rho}\right)^{\frac{1}{2}}$

It should be noted that the transverse vibration velocity is inversely proportional to the wavelength, λ and the velocity is thus dispersive with wavelength, or frequency.

In the trigonometric expressions above, the term $q\ell$ may be replaced by $q\ell = \frac{2\pi}{\lambda}\ell$ where λ is the wavelength of the particular resonant mode.

Substituting for λ , the expression for velocity may finally be written as, $V = \frac{Z}{\ell} \left(\frac{EK^2}{\rho}\right)^{\frac{1}{2}}$