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Introduction. 

 

When wishing to understand the behaviour of beams subject to an impulsive or complex, non-

periodic moment applied to the ends, an analytic solution to the equations of motion is not possible 

and it is therefore necessary to resort to a numerical solution. Such a solution is normally attempted 

using a Finite Element simulation on a computer. However, commercially available FEA programs 

that are able to tackle time varying forces of a complex nature are usually aimed at the automobile 

or aircraft manufacturer, who need to calculate time dependent stress distributions and to simulate 

how their vehicles react in a crash. Consequently, programs of the complexity and power to render 

such scenarios are beyond the financial means and computing resources of individuals or small 

businesses. 

 

However, instead of the generalised three dimensional mesh approach used in commercial FEA 

programs, it is probably sufficient to consider a beam as a one dimensional series of linked elements 

which affords great simplification both in the computer model and the computing power required to 

run it, without necessarily compromising the accuracy of the results. 

 

A generalised lumped parameter model of a beam is described and an equation of motion is derived 

which is shown to be formally equivalent to the usual analytic equation of motion for transverse 

vibrations in a beam. It is then shown how this model may be implemented in a numerical model 

that can be easily and quickly programmed for a small computer or even a programmable calculator. 

 

 

 

The Lumped Parameter Model 

 

A simple mathematical model of a beam can be created by considering a lumped parameter system 

to represent a beam which is able to bend and vibrate in the vertical plane as shown in Figure 1.  A 

light, flexible strip which is able to bend freely in the vertical plane represents the midline of the 

system. Attached to this strip are a set of discrete masses M. These masses are connected to a set of 

springs above and below the strip via light (but stiff) rods.  Each pair of springs and the mass M to 

which they are connected by the rods may be considered as one element in a one dimensional series 

of N connected elements. A time varying moment applied at one end will be transmitted through the 

system via the springs and cause the masses to vibrate in the vertical plane.  

 

One condition imposed on the system is that the light rods are connected at right angles (normally) 

to the flexible strip at all times. 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

 

 

 

 

 

                         

 

 

 Figure 1 

 

For the purpose of analysis, only one spring and rod 

associated with mass M need be considered as the 

spring system below the midline strip is a mirror 

image of that above it.  

 

Let the length of each element be L and the height 

of the light rods be K. Let F be the force applied to 

a spring and let F = φX, where φ is the spring 

constant and X is the change in length of the spring 

due to the application of the force F. 
 

As the spring changes in length, it causes the 

flexible strip to bend, displacing the mass in the 

vertical direction. 

 

The flexible strip bends in an arc of radius R and 

subtending an angle θ. 

 

The displacement Y of the mass M can be written 

as, 

                              CosY R R= − θ  

 

For small angles, Cos
2

1
2

θ
θ ≈ −  

 

                           Thus, 

2

Y R
2

θ
≈  Figure 2 



 

 

 

 Similarly, the spring extension X may be expressed as,   X K= θ    and by symmetry,  

 

Eqn. 1             
X L

K R
=  

  

Small changes ∆θ in θ result in a change ∆Y such that, Y R L∆ = θ ∆θ = ∆θ   

 

Also, from 
X

K

∆
∆θ =   

 

Eqn. 2        
L

Y X
K

∆ = ∆  

 

 

  

 

 

 

 

 

Substitute F X= ϕ  and the equation of motion for the 

mass M can be written in terms of the parameters φ and K as, 

 

Eqn. 3                                                           
d

dt

2

2

Y 2 K X

M L

ϕ
= −  

 

Quantifying the parameters for an actual beam 

The spring constant φ can be written in terms of  Young's modulus E such that   
ES

2 L
ϕ =  

where S is the cross-sectional area of the beam. The factor 2 in the denominator is due to the fact 

that the system of springs depicted is mirrored above and below the midline. Thus the surface area 

to be considered associated to each spring in the model is half the cross-sectional area of the beam. 

The acceleration of the mass M due to 

the force F may be obtained by 

considering the moments about Z in 

Figure 3. 

 

The moments about Z are   

         
d

Sin
dt

2

2

Y
2 pF L Mψ = −  

(The figure 2 on the left hand side 

accounts for the spring below the 

midline strip which is also acting on 

the mass M)  
 

Now, 

( )
Sin

1
2 2 2

K

L K
ψ =

+

 

 

and,   ( )
1

2 2 2p L K= +  

 

So, the moments can be re-written as, 

 

          
d

dt

2

2

Y
2F K L M= −  

 
Figure 3 



 

The mass M can be written in terms of the density ρ of the beam such that M L S= ρ  

 

Substituting for the parameters φ and M in equation 2 yields the final equation of motion used in the 

computer model. 
 

 Eqn. 4                                                        
d

dt

2

2 3

Y E K X

L
= −

ρ
  

            

In relation to an actual beam bent around its midline, as in Figure 4, the term K for the lumped 

parameter system may be considered as the effective distance at which the force F acts to apply a 

moment FK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                  
 

 

                    

 

 
                    

 

 
                    

 
  

 

 

 

 

 

 

 

 

 

 

 

To determine K, consider the segment of beam 

in Figure 4, where an element of cross-

sectional area dS is a distance k from the 

midline. The element is subject to a force dF 

and is extended a distance X. The force dF may 

be expressed as, 

 

                          
d

d
E S X

F
L

=  

 

Using Eqn. 1 to rewrite dF, 
 

                          
d

d
E S k

F
R

=  

The moment for this element about the midline 

is 

                          
d

d
2E S k

k F
R

=  

Integrating over half the cross-sectional area, 

the moment FK is then, 

 

                         
2

S

2

E
FK k dS

R
= ∫  

 

As an example, consider a tube with outer 

diameter 2b and inner diameter 2a, the 

moment FK can be expressed as, 

 

              d Sin d
b

3

0 a

E
F K r r

R

π

= α α∫ ∫  

 

where   Sink r= α    and   d d dS r r= α  

 

 

Figure 4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Since the cross-sectional area ( )2 2S b a= π −  the parameter K for a tube can finally be expressed in 

terms of a and b as, 

                                                                        

1
4 4 2

2 2

1 b a
K

2 b a

 −
=  

− 
 

 

Validity of the lumped parameter model 
 

If the change X in the length of the spring L is small compared to L, then from Eqn. 2, the change 

∆X in the length of the spring can be written as 
K

X Y
L

∆ = ∆   

 

Substituting ∆X for X in  Eqn. 4 reveals, 
 

Eqn. 5                                            
d

dt

2 2

2 4

Y E K Y

L

∆
= −

ρ
 

 

This will be recognised as having the form of the usual analytic equation of motion for transverse 

vibrations on a beam. This shows that this lumped parameter approach as described is valid in 

treating the dynamics of a beam subject to external stresses. 

 

 

 

 

 

 

 

Integrating over r and α, 

 

                      
( )4 4E b a

FK
8R

π −
=  

 

Now, using Eqn.1, the force F on a spring can 

be written as  

                  
ES X ESK

F X
2L 2R

= ϕ = =  

 

from which 
ESK

R
2F

=  and it follows that, 

 

                         
( )4 4

2
b a

K
4S

π −
=  

 

 
        Figure 5 



 

 

The computer model 

 

In this section, the way in which the lumped parameter model is implemented in a computer 

program is considered. 

 

Let 
3

E K
Q

L
=

ρ
 then the equation of motion for a mass in the n

th
 element nM becomes 

 

n
n

d

dt

2

2

Y
Q X=  

 

For a single time step ∆t, the following computations are executed sequentially for all N elements of 

the system. 

 

Let ( )n startV  be the velocity of the mass nM  at the start of a time step ∆t. The velocity at the end of 

the time step ( )n endV  will be  

 

( ) ( ) ( )n
n n n

t t

d
end start dt t dt

dt

2

2

Y
V V C V

∆ ∆

 
= + − 

 
∫ ∫  

 

The constant C is a velocity dependent frictional damping term, necessary to ensure stability for the 

model. (The energy being put into the system has to go somewhere!). See the Appendix for an 

evaluation of this damping factor. 
  

For a small time step ∆t, 

 

Eqn. 6         ( ) ( ) ( ) ( ) ( )n n n n n
end start start start t start t1V V Q X X C V

+
≈ +  − ∆ − ∆   

 

Note that the net force present at the n
th

 node will be a result of the extensions of n
th

 spring and the 

n+1
th

 spring. 

 

The displacement nY∆  of the mass nM during the time step ∆t will be 

 

( ) ( )n n n n
t

t
dt start endY V V V

2∆

∆
∆ = ≈  +  ∫  

 

The vertical Y position of the mass nM  at the end of the time step ∆t will be 

 

( ) ( )n n nend startY Y Y= + ∆  

 

The change n∆θ  in the angle nθ of the n
th

 rod to the vertical will be 

 

 
( )n n

n

1Y Y

L

−
∆ − ∆

∆θ =  Note the n 1Y −∆  term. This is also how energy is propagated down the chain 

of elements.  



 

Note that the change in angle of the n
th

 rod depends on the difference in movements of the n
th

 and 

the n-1
th

 masses during the time step ∆t. The change in angle of the n
th

 rod is relative to the change 

in angle of the n-1
th

  rod, to which the other end of the spring is attached. 

  

The angle of the n
th

 rod to the vertical at the end of the time step ∆t will be 

 

( ) ( )n n nend startθ = θ + ∆θ  

 

Alternatively, the change nX∆ in the extension nX of the n
th

 spring during the time step  ∆t will be 

 

[ ]n n n 1

K
X Y Y

L
−∆ = ∆ − ∆  Note the n 1Y −∆  term. The change in length of a spring depends on the 

movements of the masses at both ends of the spring. This is also how energy is propagated down the 

chain of elements.  

 

The extension nX in the n
th

 spring at the end of the time step ∆t will be 

 

( ) ( ) ( )n n n
end end end1X K

−
= θ − θ    

  

or equivalently, 
 

( ) ( )n n n nend start 1X X X X −= − ∆ + ∆   

 

It now remains to reset the end values of the variables for all N elements to be the start values for 

the beginning of the next time step. 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n n

n n

n n

n n

start end

start end

start end

start end

X X

V V

Y Y

=

=

=

θ = θ

 

 

By storing the values Yn(end) and θn(end) as a function of time, it is possible to obtain the vertical 

displacements and angle to the vertical (or horizontal) of each element in the beam as a function of 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix – Evaluation of the damping factor. 

 

The lumped parameter system described above may also be viewed as a series of strongly coupled 

oscillating systems, with a highly peaked "q" factor at the resonant frequency of the individual 

element, particularly if all the elements are the same size. In practice, this will be exhibited by a 

tendency for each mass to oscillate up and down at the resonant frequency, each in anti-phase with 

its neighbouring mass. To prevent this, each element should be critically damped at the resonant 

frequency.  

 

The undamped resonant frequency of each element may be derived as follows: 

Noting from above that; 
2

Y R
2

θ
≈   and  X K= θ  then substituting into Eqn. 1, X may be expressed 

in terms of  Y as,   
2K Y

X
L

=     Substituting into Eqn. 4 reveals, 

 

Eqn. 7    
d

dt

2 2
2

2 4

Y 2E K Y
Y

L
= − = − ω

ρ
  

  

where ω is the resonant frequency of each element such that, 

 

Eqn. 8    r

1
2 2

4

E K
2

L

 
ω =  

ρ 
 

The period of the resonant frequency will be rτ where, r

1
4 2

2

2 L

EK2

 π ρ
τ =  

 
 

 

Starting with Eqn. 6 above, which describes the vertical velocity of the mass in each element, 

 

 ( ) ( ) ( ) ( ) ( )n n n n n
end start start start t start t1V V Q X X C V

+
≈ +  − ∆ − ∆   

 

This may be re-expressed as, ( )n
n n start

t

V
Q X C V

∆
= ∆ −

∆
 

 

Now, if the element is critically damped, the acceleration of the mass will be zero and so, 

 

( )n n startQ X C V∆ =  Then, substituting Eqn. 2, and re-writing, n n

t

2

4

E K Y Y
C

L

∆ ∆
=

ρ ∆
  

or, 
t2

4

E K
C

L

∆
=

ρ
 

For critical damping at the resonant frequency, the term ∆t in the equation for C will be related to 

rτ the period of the resonant frequency.  From information theory, to sample a frequency of period 

rτ , the period ∆t needs to be set to 0.5 rτ  

The final expression for the damping factor C is then, .

1 1
2 22 2

4 4

E K E K
C 2 22

L L2

   π
= ≈   

ρ ρ   
 



In fact, a value of .

1
2 2

4

E K
C 1 7

L

 
≈  

ρ 
 would appear to be a more suitable value in practice, and the 

model is not well behaved if the value of C varies from this value by more than ±10% 

 

 

Conclusions 

 

The model described here can be applied relatively easily to actual physical situation. The model 

appears to be reasonably easy to implement and run-time is fast. Benchmark tests to simulate a 

cantilever (fixed-free beam) produced a first mode frequency vibration that was within 3% of the 

theoretical value.  

 

The critical damping frequency is clearly the upper limit of the frequency response of the model and 

the effect of the damping factor is to apply a low pass filter with a roll-off of 3db per octave from 

the resonant frequency. Of course, the shorter the elements are, the higher the frequency response of 

the model will be. It is seen from Eqn. 8 that the element resonant frequency goes as the inverse of 

the element length squared, so significant improvements in frequency response are achieved by 

shortening the elements. But there is a limit as the model becomes unstable if the element length is 

set significantly shorter than the element width. Too, if the elements are shortened, there needs to be 

an increasing number of them to model the length of the beam and so the computing time will be 

lengthened.  

 

 

 

 
 

 

 

 


